
How much does a compiler cost -
and other assorted history

Russel Arbore

In the beginning…

● Programs written directly in assembly or
machine code

● The first programs resembling compilers
popped up in the 50s

○ Autocode by Alick Glennie in 1952
○ FORTRAN led by John Backus in 1957
○ ALGOL 58 by Friedrich Bauer in 1958

● The first multi-target compiler was the COBOL
compiler - in 1960, a COBOL program was run
on both the UNIVAC II and the RCA 501

● A first cost estimate: the FORTRAN compiler
took 18 man years of development

IBM 704

The early 60s - self-hosting

● NELIAC was the first self-hosted compiler
○ Written in and implemented ALGOL in 1958 by Harry Huskey
○ Used small assembly bootstrap compiler

● LISP
○ First self-hosted compiler written in 1962 by Tim Hart and Mike Levin
○ Bootstrapped from an existing LISP interpreter

Program Optimization

● Pioneered by Frances Allen and John Cocke
● Introduced using graph data structures to encode programs in Program

Optimization, 1966
● Introduced program intervals and basic data flow analysis in Control Flow

Analysis and A Basis for Program Optimization, both in 1970
● A Catalogue of Optimizing Transformations in 1971 described many new

optimizations
● A Program Data Flow Analysis Procedure in 1976 described data flow

analysis as we know it today

Program Optimization, in the wild

● Peephole optimizations were introduced by William McKeeman in 1965, used
in the XPL compiler

○ XPL is a derivative of PL/I
● Capex Corp. developed the “COBOL Optimizer” in the mid 1970s

○ Patched specific patterns in object code generated by the IBM COBOL compiler

The rise of C

● In 1964, MIT sought to build a successor to their Compatible Time Sharing
System, called Multics

● Decided to use the language PL/I, before a compiler for PL/I existed
● The PL/I compiler only arrived in 1966
● Many companies pulled out of Multics due to the clown show

○ Digitek was contracted to build the PL/I compiler, and totally flopped
○ A subset of the Multics folks developed EPL (early PL/I) and developed a compiler on their

own
● Bell Labs pulls out of the project in 1969

The rise of C

● Ken Thompson, who was previously working on Multics, implemented a new
operating system for the PDP-7

● Later ported to PDP-11 - called “Unix”
○ Implemented in assembly

● The original high level language was “B” - an interpreted language
● Dennis Ritchie and Ken Thompson wanted to continue developing the OS in a

high level language, but B wasn’t going to cut it - C!
○ B consumed too much memory

The rise of C

● C grew features as needed to implement Unix
○ Structs
○ Bitfields
○ Preprocessor

● Grew organically, but standardization came late
● C came to dominate systems software in the late 70s and 80s

○ Almost every operating system were written in C
○ Many companies wrote their own C compilers for their own machines

● Unfortunately, Ritchie’s The Development of the C Language is a little sparse
on details specifically about the C compiler

The GNU Project

● The GNU Manifesto was released in 1983
● At that point, GCC had already started

development
● GCC was released in 1987, written from

scratch by Richard Stallman and others
● By the 90s, GCC out-performed many

vendor C compilers, supported 13
architectures, and was used by several
companies

C++

● Started as C with Classes in 1979
● C++ born as a successor to CwC in 1982

○ Virtual functions
○ Overloading
○ References
○ Many other features…

● Developed in a standalone compiler, Cfront
● Cfront translated C++ to C
● Itself written in C++
● Cfront was abandoned in 1993 after failing to add exceptions

C/C++ Compilers in the 90s

C/C++ Compilers in the 90s

● Many companies pooled together funds for the GNU C compiler
● GCC improved drastically throughout the 90s and early 2000s
● Implemented a C++ frontend
● A C/C++ compiler no longer became a constraint of a new system

Early 2000s: LLVM

● Chris Lattner first described LLVM in his
2002 Master’s thesis

● While GCC was an amazing compiler, it
was not modular / reusable / extensible

● LLVM is a library compiler
● Allowed LLVM to be used for…

○ Databases
○ Shader compilers
○ GPGPU (CUDA is built on LLVM)
○ HLS tools
○ JIT

● GCC is architecturally incapable of doing
everything above

Late 2000s and 2010s

● Lots of development in interpreted / bytecode languages / transpilers
● Javascript

○ AJAX and related ideas allowed for dynamic web apps w/o the need to reload the page
○ Google released Chrome 2008, featuring the V8 JavaScript engine, featuring a JIT compiler
○ Transpilers from languages like TypeScript, CoffeeScript, Elm, Dart

● WebAssembly
○ JavaScript turned into a transpiler target / IR code format
○ New idea: create a lower level code format for web browsers to execute
○ LLVM has a WebAssembly backend now!

● Additionally, LLVM became more entrenched w/ usage by Apple, CUDA,
OpenCL

Compilers in the modern day

● Increasingly targeting heterogeneous devices
○ GPUs
○ Accelerators
○ SmartNICs

● Increasingly focusing on specific workloads
○ DL
○ DL
○ DL

Compilers in the modern day

So how much does this all cost?

● Compilers are infamously difficult to develop
● Hard to quantify

○ $ / sloc?
○ What about debuggers, linkers, assemblers, or standard libraries (the toolchain)?

● What parts are more expensive (frontend errors vs. optimization vs. code
generation vs. testing)?

So how much does this all cost?

So how much does this all cost?

● Intel Graphics Compiler,
Rust, and Swift are all LLVM
based

● GHC is known for being very
small, Haskell is also
generally more compact than
other languages

So how much does this all cost?

● Intel Graphics Compiler,
Rust, and Swift are all LLVM
based

● GHC is known for being very
small, Haskell is also
generally more compact than
other languages

● It depends - 10^6 to 10^8 for
a production compiler.

A smaller case study

● https://www.embecosm.com/2018/02/26/how-much-does-a-compiler-cost/
● Goal: develop an LLVM based compiler to target a custom DSP

○ Basically write a backend for a weird, 16-bit word processor
● Took 120 engineer days from 5 experienced compiler engineers
● 120 engineer days costs less than $1,000,000

https://www.embecosm.com/2018/02/26/how-much-does-a-compiler-cost/

A reminder

A reminder

My guess? Several billion dollars.

“The next LLVM”

● MLIR is the chosen successor, but hasn’t seen as much adoption yet
● Projects using MLIR don’t play nicely with each other
● There is interest in companies, but LLVM already works very well
● Rust, Swift, and Clang have not transitioned to MLIR based IRs yet

Hopefully not the foreseeable future…

